Bond-breaking induced Lifshitz transition in robust Dirac semimetal VAI3
نویسندگان
چکیده
منابع مشابه
Dirac semimetal in three dimensions.
We show that the pseudorelativistic physics of graphene near the Fermi level can be extended to three dimensional (3D) materials. Unlike in phase transitions from inversion symmetric topological to normal insulators, we show that particular space groups also allow 3D Dirac points as symmetry protected degeneracies. We provide criteria necessary to identify these groups and, as an example, prese...
متن کاملTerahertz-induced acceleration of massive Dirac electrons in semimetal bismuth
Dirac-like electrons in solid state have been of great interest since they exhibit many peculiar physical behaviors analogous to relativistic mechanics. Among them, carriers in graphene and surface states of topological insulators are known to behave as massless Dirac fermions with a conical band structure in the two-dimensional momentum space, whereas electrons in semimetal bismuth (Bi) are ex...
متن کاملTemperature-Induced Lifshitz Transition in WTe2.
We use ultrahigh resolution, tunable, vacuum ultraviolet laser-based, angle-resolved photoemission spectroscopy (ARPES), temperature- and field-dependent resistivity, and thermoelectric power (TEP) measurements to study the electronic properties of WTe2, a compound that manifests exceptionally large, temperature-dependent magnetoresistance. The Fermi surface consists of two pairs of electron an...
متن کاملNegative magnetoresistance in Dirac semimetal Cd3As2
A large negative magnetoresistance (NMR) is anticipated in topological semimetals in parallel magnetic fields, demonstrating the chiral anomaly, a long-sought high-energy-physics effect, in solid-state systems. Recent experiments reveal that the Dirac semimetal Cd3As2 has the record-high mobility and positive linear magnetoresistance in perpendicular magnetic fields. However, the NMR has not ye...
متن کاملInfrared conductivity of elemental bismuth under pressure: evidence for an avoided Lifshitz-type semimetal-semiconductor transition.
The application of pressure to elemental bismuth reduces its conduction-valence band overlap, and results in a semimetal-semiconductor (SMSC) transition around 25 kbar. This transition is nominally of the topological "Lifshitz" Fermi surface variety, but there are open questions about the role of interactions at low charge densities. Using a novel pressure cell with optical access, we have perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2020
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1917697117